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Abstract A stabilization technique for conservation laws is presented. It consists
of introducing in the governing equations a nonlinear dissipation function of the
residual of the associated entropy equation and bounded from above by a first order
viscous term. Different two-dimensional test cases are simulated - a 2D Burgers
problem, the “KPP rotating wave” and the Euler system - using high order methods:
spectral elements or Fourier expansions. Details on the tuning of the parameters
controlling the entropy viscosity are given.

1 Introduction

High-order methods, especially spectral methods, are very efficient for solving Par-
tial Differential Equations (PDEs) with smooth solutions since the approximation
error goes exponentially fast to zero as the polynomial degree of the approxima-
tion goes to infinity, i.e. spectral accuracy is observed. Unfortunately this property
breaks down for non-smooth solutions such as those that arise from solving nonlin-
ear conservation laws. This type of equations generates shocks which in turn induce
the so-called Gibbs phenomenon. The problem is not new and many sophisticated
algorithms have been developed to address this issue. Particularly popular among
these methods are the so-called monotone and Total Variation Diminishing (TVD)
schemes that aim at enhancing the accuracy far from the shocks and promoting non-
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oscillatory behavior at the shocks. These techniques are mainly based on Essentially
Non Oscillatory polynomial reconstructions (ENO) and the use of flux/slope limiters
whose goal is to bound the fluxes. One may consult [3] for an overview on this class
of methods, which were mainly developed for Finite Volume approximations.

It is remarkable that few methods have been proposed for solving nonlinear con-
servation laws with high order methods. Among them, in the frame of spectral meth-
ods the well known “spectral vanishing viscosity” [6] technique consists of introduc-
ing a dissipation term only active in the high frequency range of the spectral approx-
imation. In the same spirit, but on the basis of a hp-finite element approximation and
a Discontinuous Galerkin method, it was also recently proposed to introduce a dissi-
pation term, based on a viscosity controlled by a smoothness indicator [5]. The goal
of the present paper is to present a somewhat different viscosity method, which was
recently introduced in [2] by the authors. Here again the key idea consists of aug-
menting the PDE with a dissipation term, but the viscosity is based on the residual
of the associated entropy equation. Here we propose a simplified formulation of the
method and extend it to two-dimensional problems. The technique is implemented
with Fourier polynomials and the Spectral Element Method (SEM).

The paper is organized as follows. We describe the entropy viscosity method in
Section 2. An application to the two-dimensional inviscid Burgers equation with
Fourier polynomials is described in Section 3 and convergence tests are reported.
The method is adapted to the SEM setting in Section 4 and is illustrated on a non-
linear conservation law exhibiting a rotating composite wave. In Section 5 we adapt
the entropy viscosity method to the two-dimensional Euler system and solve a clas-
sical benchmark problem using the Fourier approximation.

2 The entropy viscosity method

It is well known that the relevant weak solution of the scalar conservation law

∂tu(x, t)+∇ · f(u(x, t)) = 0 , x ∈Ω , t ∈ R+ (1)

with appropriate initial and boundary conditions, is the so-called entropy solution,
which is also characterized by u = limν→0 uν where

∂tuν +∇ · f(uν) = ν∆uν . (2)

Let us recall the following points, see e.g. [3] and references herein: a) Solving
(2) rather than (1), with a “small” value of ν , yields the Von-Neumann-Richtmyer
method, developed for the Euler equations in 1950 ! Such an approach is how-
ever well known to be too diffusive. b) Linear techniques such as the Lax-Wendroff
scheme are more accurate than the first-order viscosity regularization but they are
not fully satisfactory since the solution is often polluted by spurious oscillations. To
overcome this difficulty one usually resorts to TVD schemes. c) High-order (> 1)
TVD (and so monotonicity preserving) schemes must be nonlinear, as stated by the
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Godunov theorem. d) Nonlinear schemes with flux/slope limiters essentially consist
of adding some nonlinear viscosity dissipation.

Starting from this last point, the entropy viscosity method is based on introducing
a nonlinear dissipation term ∇.(νh∇u) in the right hand side of (1). Let E(u) be a
convex function and assume that there exists an entropy pair (E(u),F(u)) such that

∂tE(u)+∇ ·F(u)≤ 0

characterizes the unique viscous limit to (1) (i.e. the entropy solution). Let rE(u) :=
∂tE(u)+ ∇ ·F(u) be the entropy residual. This quantity is a negative measure sup-
ported on the shocks, i.e. rE < 0 at the shocks and rE = 0 elsewhere.

Assume that the computational domain Ω is discretized, let h be the grid size
and uh the numerical solution. We propose to construct a local artificial nonlinear
viscosity based on the entropy residual rE(uh). To this end we first set

νE(x, t) := αh2(x)R(rE(uh))/‖E(uh)− Ē‖∞,Ω (3)

where α is a proportionality coefficient, Ē is the space average of E(uh) (recall that
E is defined up to a constant), ‖.‖∞,Ω is the usual L∞(Ω) norm and R(rE) is a
positive function (or functional) of the residual rE . The terms h2(x) and ‖E(uh)−
Ē‖∞,Ω are scaling factors. The aim of R(rE) is to extract a useful information from
the residual; Hereafter we use R(rE) = |rE |. Note that in smooth parts of u, one may
expect that rE(uh) scales like the approximation error of the resolution method.

We now provide an upper bound for the entropy viscosity. For the one-dimensional
scalar conservation equation ∂tu + f ′(u)∂xu = 0, the first-order Finite Difference
upwind scheme (linear monotone scheme) is equivalent to the second-order cen-
tered Finite Difference augmented with a viscous dissipation with viscosity νmax =
1
2 f ′(u)h. By analogy we set

νmax(x, t) = αmax hmax
y∈Vx
|f′(uh(y, t))|, (4)

where αmax is a constant coefficient, and Vx is a neighborhood of x still to be defined
and dependent on the approximation method. In practice the size of Vx is a few
multiples of h in each direction. Finally the entropy viscosity is defined to be

νh(x, t) := S (min(νmax,νE)) (5)

where S is a smoothing operator. Smoothing may indeed be required because
rE(uh) is generally highly oscillatory, since when a shock occurs we actually try
to approximate a Dirac distribution. Practical implementation details on the opera-
tor S and on the neighborhood Vx, as well as details on how to tune the coefficients
α and αmax are provided in the examples studied in next sections.
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3 2D Burgers (Fourier)

Let Ω = (0,1)2 and consider the following inviscid Burgers problem, where v =
(1,1) is a constant vector field:

∂tu+∇.(
1
2

u2v) = 0, u|t=0 = u0(x,y) (6)

where u0 = −0.2 if x < 0.5, y > 0.5, u0 = −1 if x > 0.5, y > 0.5, u0 = 0.5 if x <
0.5, y < 0.5 and u0 = 0.8 if x > 0.5, y < 0.5. The local velocity f′(u) = uv is parallel
to v and of amplitude u.

To be able to solve this problem with Fourier expansions we transform it into a
periodic problem by extending the computational domain to (0,2)2 and by extend-
ing the initial condition by symmetry about the axes {x = 1}, {y = 1}.

We choose the entropy pair E(u) = 1
2 u2, F(u) = 1

3 u3v, and then follow the proce-
dure described in Section 2. The entropy viscosity is computed in the physical space
at the Fourier nodes. For each Fourier node x, the neighborhood Vx is composed of
the 7×7 Fourier nodes surrounding x. The smoothing operation is performed by
doing two smoothing sweeps, each one based on a two-dimensional averaging rule
involving 5 grid-point values, with weight 4 for the central point and 1 for the 4
closest points.

Fig. 1 Fourier-RK4 solution (Left) and entropy viscosity (Right).

The time marching is done by using the standard Runge-Kutta scheme (RK4).
The entropy viscosity is taken constant in time during the time-step, say from time
tn to tn+1, and so computed at time tn. Using the second order backward finite differ-
ence approximation, the time derivative of the entropy is computed from the values
of E at time tn, tn−1 and tn−2.

We show in Fig. 1 computations done at time t = 0.5 with 192 Fourier modes in
each direction, i.e. with 1922 grid points in (0,1)2. The non-linearity was de-aliased
using the 3

2 padding rule. The entropy viscosity control parameters are α = 0.2 and
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αmax = 1.5. The approximate solution is shown in the left panel of Fig. 1, and the
entropy viscosity is shown in the right panel. The shocks are well described and the
entropy viscosity focuses in the shocks as expected.

Table 1 Errors and convergence rates for the 2D Burgers problem.

h L1 rate L2 rate L∞

2.78E-2 1.92E-2 – 1.02E-1 – 1.47
1.39E-2 9.99E-3 0.94 7.28E-2 0.49 1.50
6.94E-3 5.34E-3 0.89 5.41E-2 0.43 1.50
3.47E-3 2.79E-3 0.95 3.80E-2 0.51 1.51

The exact solution to (6) can be evaluated at time t = 0.5. Table 1 gives the rela-
tive error in the L1- and L2-norm for different grid sizes. One observes convergence
rates close to optimality, i.e. order one in the L1-norm and half order in the L2-norm.
Of course, no convergence is obtained in the L∞ norm.

4 KPP rotating wave (SEM)

We now use the SEM method to solve the following two-dimensional nonlinear
scalar conservation law:

∂tu+∇ · f(u) = 0, f(u) = (sinu,cosu), u|t=0 =

{
3.5π if |x|< 1
1
4 π otherwise

in the domain Ω = (−2,2)×(−2.5,1.5) for t ∈ (0,1). This problem has been pro-
posed by Kurganov, Petrova and Popov [1] to test the convergence properties of
some WENO schemes.

The local velocity is v = f′(u) = (cosu,−sinu). We choose the entropy pair
E(u) = 1

2 u2, F(u) = (usinu + cosu,ucosu− sinu). Then we follow the procedure
defined in Section 2.

The domain is uniformly discretized using squares of side h and the approxi-
mation space is composed of the functions that are continuous and piecewise poly-
nomial of partial degree at most N. The local shape functions are the Lagrange
polynomials associated with the (N + 1)2 Gauss-Lobatto-Legendre (GLL) points.
To define the entropy viscosity we follow the procedure described in Section 2, ex-
cept that in (4) we have used the local grid size of the GLL mesh, say hGLL, rather
than h. The neighborhood Vx is defined as the corresponding spectral element of x,
during the assembling procedure. The smoothing is achieved inside each element on
the GLL mesh, by one smoothing sweep based on a two-dimensional averaging rule
involving 5 GLL grid-points. The entropy viscosity control parameters are α = 40
and αmax = 0.8/N. The time marching is done by using the standard Runge-Kutta
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Fig. 2 SEM-RK4 solution for the KPP rotating wave. Solution (Top left) and corresponding en-
tropy viscosity (Top right) for N = 4 and 962 cells. Ratio ν/νmax for 962 cells (Bottom left) and
482 (Bottom right).

scheme (RK4). The entropy viscosity is made explicit and computed by using the
second order backward finite difference approximation for the time derivative of the
entropy.

Results reported in the two top panels of Fig. 2 have be obtained with a grid
composed of 962 square elements and with polynomials of degree N = 4 in each
variable. The numerical solution is shown in the left panel; It exhibits the correct
composite wave structure. The corresponding entropy viscosity is shown in the right
panel; As expected, dissipation is added only where the shock develops.

We finish this section by providing more details on how to adjust the entropy
viscosity parameters. The idea is that to be efficient, the viscosity must reach its
maximum value in the shocks. Consequently, we propose the following two-step
adjustment procedure:

1. Set α = ∞ and increase αmax until obtaining a smooth solution (a good guideline
is that αmax = 1

2 is the correct answer in one space dimension on uniform grids).
2. Once αmax is fixed, set α so that the entropy viscosity saturates in the shocks, i.e.

max(ν) = νmax in shocks.
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The two bottom panels in Fig. 2 show the ratio ν/νmax for two different dis-
cretizations. Observe that this ratio equals 1 in the shock.

5 2D Euler system (Fourier)

We finish this paper by explaining how the entropy viscosity method can be adapted
to the compressible Euler equations:

∂tu+∇ · f(u) = 0, u =

 ρ

ρv
E

 , f =

 ρv
ρv⊗v+ pI

v(E + p)

 (7)

where p = ρT , T = (γ − 1)(E/ρ − v2/2). Usual notations are used: ρ,v, p,T,γ,E
stand for density, velocity, pressure, temperature, ratio of specific heat, and total
energy, respectively. The physical entropy functional S(p,ρ) = ρ

γ−1 log(p/ργ) is
such that rS := ∂tS +∇ · (vS)≥ 0.

To understand where and how the entropy dissipation must be set, it is helpful to
follow the physics by considering the viscous fluxes appearing in the Navier-Stokes
equations:

fvisc(u) =

 0
−µ∇v

−µv:∇v−κ∇T

 .

The quantity µ is the dynamic viscosity and κ is the thermal conductivity.
First, we compute µS, except that there is no need to normalize by ‖S− S̄‖∞,Ω in

(5): µS = α h2 ρ(x, t)|rS(x, t)|. Then, estimating the maximum local wave speed to
be |v|+

√
γT , we set µmax = αmax hρ(x, t)maxy∈Vx(|v(y, t)|+

√
γT (y, t)). Finally,

µ = S (min(µmax,µS)) and, taking κ to be proportional to µ , κ = β µ .
We now validate this approach by solving the benchmark problem number 12

from [4]. It is a two-dimensional Riemann problem set in R2. In the restricted com-
putational domain (0,1)2 the initial set of data is defined as follows:

p = 1., ρ = 0.8, v = (0., 0.), 0. < x < 0.5 0. < y < 0.5,

p = 1., ρ = 1., v = (0.7276, 0.), 0. < x < 0.5, 0.5 < y < 1.,

p = 1., ρ = 1., v = (0., 0.7276), 0.5 < x < 1., 0. < y < 0.5,

p = 0.4, ρ = 0.5313, v = (0., 0.) 0.5 < x < 1., 0.5 < y < 1..

The solution is computed at time t = 0.2. Proceeding as in Section 3, the problem
is first made periodic by extending the computational domain to (0,2)2, and the
initial data are extended by symmetry about the axes {x = 1} and {y = 1}. The
time marching algorithm, the definition of the smoothing operator, and the neigh-
borhood Vx are the same as in Section 3. The nonlinear terms are de-aliased. The
control parameters for the entropy viscosity are α = 20, αmax = 0.5 and β = 2. We
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Fig. 3 Pressure (top left); Density (top right); Temperature (bottom left); Entropy viscosity µ

(bottom right).

show in Fig. 3 results obtained with 400 Fourier modes in each direction, i.e. with
400 grid-points in (0,1)2 . They compare well with those obtained with other more
sophisticated shock capturing methods, see [4].
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